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Abstract

We present the Weighted Mutual Exclu-
sion Bootstrapping (WMEB) algorithm for
simultaneously extracting precise seman-
tic lexicons and templates for multiple cat-
egories. WMEB is capable of extracting
larger lexicons with higher precision than
previous techniques, successfully reduc-
ing semantic drift by incorporating new
weighting functions and a cumulative tem-
plate pool while still enforcing mutual ex-
clusion between the categories.

We compare WMEB and two state-of-the-
art approaches on the Web 1T corpus and
two large biomedical literature collections.
WMEB is more efficient and scalable, and
we demonstrate that it significantly outper-
forms the other approaches on the noisy
web corpus and biomedical text.

1 Introduction

Automatically acquiring semantic lexicons and
templates from raw text is essential for overcom-
ing the knowledge bottleneck in many natural lan-
guage processing tasks, e.g. question answer-
ing (Ravichandran and Hovy, 2002). These tasks
typically involve identifying named entity (NE)
classes which are not found in annotated cor-
pora and thus supervised NE recognition mod-
els are not always available. This issue be-
comes even more evident in new domains, such as
biomedicine, where new semantic categories are
often poorly represented in linguistic resources, if
at all (Hersh et al., 2007).

There are two common approaches to extract
semantic lexicons: distributional similarity and

template-based bootstrapping . In template-based
bootstrapping algorithms, templates that express
a particular semantic type are used to recognise
new terms, and in turn these new terms help iden-
tify new templates iteratively (Riloff and Jones,
1999). These algorithms are attractive as they are
domain and language independent, require min-
imal linguistic preprocessing, are relatively effi-
cient, and can be applied to raw text.

Unfortunately, semantic drift often occurs
when ambiguous or erroneous terms or patterns
are introduced into the lexicon or set of templates.
Curran et al. (2007) developed Mutual Exclusion
Bootstrapping (MEB) to reduce semantic drift by
forcing semantic classes to be mutually exclusive.

We introduce a new algorithm, Weighted Mu-
tual Exclusion Bootstrapping (WMEB), that auto-
matically acquires multiple semantic lexicons and
their templates simultaneously. It extends on the
Curran et al. (2007) assumption of mutual exclu-
sion between categories by incorporating a novel
cumulative template pool and new term and tem-
plate weighting functions.

We compare WMEB against two state-of-the-
art mutual bootstrapping algorithms, MEB (Cur-
ran et al., 2007) and BASILISK (Thelen and Riloff,
2002). We have evaluated the terms and templates
these algorithms extract under a range of condi-
tions from three raw text collections: noisy web
text, biomedical abstracts, and full-text articles.

We demonstrate that WMEB outperforms these
existing algorithms in extracting precise lexicons
and templates from all three datasets. WMEB is
significantly less susceptible to semantic drift and
so can produce large lexicons accurately and effi-
ciently across multiple domains.



2 Background

Hearst (1992) pioneered the use of templates for
information extraction, focussing on acquiring is-
a relations using manually devised templates like
such W as X, ..., Y and/or Z where X, ..., Y, Z are hy-
ponyms of W. Various automated template-based
bootstrapping algorithms have since been devel-
oped to iteratively build semantic lexicons from
texts. Riloff and Shepherd (1997) proposed Iter-
ative Bootstrapping (IB) where seed instances of
a semantic category are used to identify related
terms that frequently co-occur.

In Mutual Bootstrapping (MB) (Riloff and
Jones, 1999) seed instances of a desired type are
used to infer new templates, which in turn iden-
tify new lexicon entries. This process is repeated
with the new terms identifying new templates. In
each iteration, new terms and templates are se-
lected based on a metric scoring their suitability
for extracting additional templates and terms for
the category. Unfortunately, if a term with multi-
ple senses or a template which weakly constrains
the semantic class is selected, semantic drift of the
lexicon and templates occurs – the semantic class
drifts into another category (Curran et al., 2007).

Extracting multiple semantic categories simul-
taneously has been proposed to reduce seman-
tic drift. The bootstrapping instances compete
with one another in an attempt to actively direct
the categories away from each other (Thelen and
Riloff, 2002; Yangarber et al., 2002; Curran et al.,
2007). This strategy is similar to the one sense
per discourse assumption (Yarowsky, 1995).

In BASILISK (Thelen and Riloff, 2002), candi-
date terms for a category are ranked highly if they
have strong evidence for the category and little or
no evidence for another. It is possible for an am-
biguous term to be assigned to the less dominant
sense, and in turn less precise templates will be
selected, causing semantic drift. Drift may also
be introduced as templates can be selected by dif-
ferent categories in different iterations.

NOMEN (Yangarber et al., 2002) was developed
to extract generalized names such as diseases and
drugs, with no capitalisation cues. NOMEN, like
BASILISK, identifies semantic category lexicons
in parallel, however NOMEN extracts the left and
right contexts of terms independently and gener-

alises the contexts.
Curran et al. (2007) introduced the algorithm

Mutual Exclusion Bootstrapping (MEB) which
more actively defines the semantic boundaries of
the lexicons extracted simultaneously. In MEB,
the categories compete for both terms and tem-
plates. Semantic drift is reduced in two ways:
by eliminating templates that collide with two or
more categories in an iteration (from all subse-
quent iterations), and by ignoring colliding candi-
date terms (for an iteration). This effectively ex-
cludes general templates that can occur frequently
with multiple categories, and reduces the chance
of assigning ambiguous terms to their less domi-
nant sense.

The scoring metric for candidate terms and
templates in MEB is simple and naı̈ve. Terms
and templates which 1) match the most input in-
stances, and 2) have the potential to generate the
most new candidates, are preferred (Curran et al.,
2007). This second criteria aims to increase re-
call, however the selected instances are highly
likely to introduce drift. We introduce a new
weighting scheme to effectively overcome this.

Template-based bootstrapping algorithms have
also been used in various Information Extraction
(IE) tasks. Agichtein and Gravano (2000) de-
veloped the SNOWBALL system to identify the
locations of companies, and Yu and Agichtein
(2003) applied SNOWBALL to extract synony-
mous gene and protein terms. Pantel and Pen-
nacchiotti (2006) used bootstrapping to identify
numerous semantic relationships, such as is-a
and part-of relationships. They incorporate the
pointwise mutual information (MI) measure be-
tween the templates and instances to determine
template reliability, as well as exploiting generic
templates and the Web for filtering incorrect in-
stances. We evaluate the effectiveness of MI as a
weighting function for selecting terms and tem-
plates in WMEB.

In the biomedical domain, there is an increased
interest in automatically extracting lexicons of
biomedical entities such as antibodies and muta-
tions, and the templates which extract such terms.
This is primarily due to the lack, and scope, of
annotated resources, and the introduction of new
semantic categories which are severely under-
represented in corpora and lexicons. Meij and Ka-



trenko (2007) applied MB to identify biomedical
entities and their templates, which were both then
used to find potential answer sentences for the
TREC Genomics Track task (Hersh et al., 2007).
The accuracy of their extraction process was not
evaluated, however their Information Retrieval
system had performance gains in unambiguous
and common entity types, where little semantic
drift is likely to occur.

3 Weighted MEB (WMEB) Algorithm

Our algorithm, Weighted Mutual Exclusion Boot-
strapping (WMEB), extends MEB described in
Curran et al. (2007). MEB is a minimally su-
pervised, mutual bootstrapping algorithm which
reduces semantic drift by extracting multiple se-
mantic categories with individual bootstrapping
instances in parallel, and by forcing the categories
to be mutually exclusive (Figure 1). In MEB,
the templates describe the context of a term (two
terms to the left and right). Each MEB instance
iterates simultaneously between two stages: tem-
plate extraction and selection, and term extraction
and selection. The key assumption of MEB is that
terms only have a single sense and that templates
only extract terms of a single sense. This is forced
by excluding terms and templates from all cate-
gories if in one iteration they are selected by more
than one category.

In this section we describe the architecture of
WMEB. WMEB employs a new weighting scheme,
which identifies candidate templates and terms
that are strongly associated with the lexicon terms
and their templates respectively. In WMEB, we
also introduce the concept of a cumulative tem-
plate pool. These techniques reduce the semantic
drift in WMEB more effectively than in MEB.

3.1 System Architecture

WMEB takes as input a set of manually labelled
seed terms for each category. Each category’s
seed set forms it’s initial lexicon.

Template Extraction and Selection
For each term in the category lexicon, WMEB

extracts all candidate templates the term matches.
To enforce mutually exclusive templates, candi-
date templates identified by multiple categories
are excluded from the candidate set and all sub-
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Figure 1: MEB architecture.

sequent iterations. The remaining candidates are
then ranked according to their reliability measure
and their relevance weight (see Section 3.2).

After manually inspecting the templates se-
lected by MEB and BASILISK, we introduced the
cumulative template pool (pool) in WMEB. In
MEB (Curran et al., 2007) and BASILISK (Thelen
and Riloff, 2002), the top-k1 templates for each
iteration are used to extract new candidate terms.
We observed that as the lexicons grow, more gen-
eral templates can drift into the top-k. This was
also noted by Jones et al. (1999). As a result the
earlier precise templates lose their influence.

WMEB successfully overcomes this by accumu-
lating all selected templates from the current and
all previous iterations in the pool, ensuring pre-
vious templates can contribute. The templates in
the pool have equal weight in all iterations.

In WMEB, the top-k templates are selected for
addition to the pool. If all top-k templates are al-
ready in the pool, then the next available top tem-
plate is added. This ensures at least one new tem-
plate is added in each iteration.

Term Extraction and Selection
For each template in a category’s pool, all

available candidate terms matching the templates
are identified. Like the candidate templates, terms
which are extracted by multiple categories are
also excluded. A colliding term will collide in all
consecutive iterations due to the cumulative pool
and thus WMEB creates a stricter term bound-
ary between categories than MEB. The candidate

1BASILISK also adds an additional template in each iter-
ation, i.e. k is increased by one in each iteration.



terms are ranked with respect to their reliabil-
ity and relevance weight, and the top-k terms are
added to the category’s lexicon.

3.2 Term and Template Weighting

In MEB, candidate terms and templates are ranked
according to their reliability measure and ties are
broken using the productivity measure. The relia-
bility of a term for a given category, is the number
of input templates in an iteration that can extract
the term. The productivity of a term is the num-
ber of potentially new templates it may add in the
next iteration. These measures are symmetrical
for both terms and templates. More reliable in-
stances would theoretically have higher precision,
while high productive instances will have a high
recall. Unfortunately, high productive instances
could potentially introduce drift.

In WMEB we replace the productivity measure
with a new relevance weight. We have investi-
gated scoring metrics which prefer terms and tem-
plates that are highly associated with their input
instances, including: the chi-squared (χ2) statis-
tic and three variations of the pointwise mutual
information (MI) measure (Manning and Schutze,
1999, Chapter 5). Each of these estimates the
strength of the co-occurance of a term and a tem-
plate. They do not give the likelihood of the in-
stance being a member of a semantic category.

The first variation of MI we investigate is MI2,
which scales the probability of the term (t) and
template (c) pair to ensure more frequent combi-
nations have a greater weight.

MI2(t, c) = log2

p(t, c)2

p(t)p(c)

Each of the probabilities are calculated directly
from the relative frequencies without smoothing.
The scores are set to 0 if their observed frequen-
cies are less than 5, as these estimates are sensi-
tive to low frequencies.

The other variation of MI function we utilise is
truncated MI (MIT), and is defined as:

MIT(t, c) =
{

MI2(t, c) : MI(t, c) > 0
0 : MI(t, c) ≤ 0

The overall relevance weight for a term or tem-
plate is the sum of the scores of the pairs, where

TYPE (#) MEDLINE TREC Web1T
Terms 1 347 002 1 478 119 568 202
Templates 4 090 412 8 720 839 10 568 219
5-grams 72 796 760 63 425 523 42 704 392
Orig. tokens 6 642 802 776 3 479 412 905 ∼ 1 trillion

Table 1: Filtered 5-gram dataset statistics.

score corresponds to one of the scoring metrics,
and C is the set of templates matching term t, and
T is the set of terms matching template c.

weight(t) =
∑
c∈C

score(t, c)

weight(c) =
∑
t∈T

score(c, t)

The terms and templates are ordered by their
reliability, and ties are broken by their rele-
vance weight. WMEB is much more efficient
than BASILISK using these weighting scores – for
all possible term and template pairs, the scores
can be pre-calculated when the data is loaded,
whereas in BASILISK, the scoring metric is more
computationally expensive. In BASILISK, each
individual calculation is dependent on the current
state of the bootstrapping process, and therefore
scores cannot be pre-calculated.

4 Experimental Setting

4.1 Data

We evaluated the performance of BASILISK, MEB

and WMEB using 5-grams from three raw text re-
sources: the Google Web 1T corpus (Brants and
Franz, 2006), MEDLINE abstracts2 and the TREC

Genomics Track 2007 full-text articles (Hersh et
al., 2007). In our experiments, the term is the
middle token of each 5-gram and the template is
the two tokens on either side. Unlike Riloff and
Jones (1999) and Yangarber (2003), we do not use
syntactic knowledge. Although we only extract
unigrams, each algorithm can identify multi-term
entities (Murphy and Curran, 2007).

The Web 1T 5-grams were filtered by removing
templates appearing with only one term and tem-
plates containing numbers. All 5-gram contexts
with a non-titlecase term were also filtered as we
are extracting proper nouns.

2The set contains all MEDLINE abstracts available up to
Oct 2007 (16 140 000 abstracts)



CAT DESCRIPTION

FEM Person: female first name
Mary Patricia Linda Barbara Elizabeth

MALE Person: male first name
James John Robert Michael William

LAST Person: last name
Smith Johnson Williams Jones Brown

TTL Honorific title
General President Director King Doctor

NORP Nationality, Religion, Political (adjectival)
American European French British Western

FOG Facilities and Organisations
Ford Microsoft Sony Disneyland Google

PLCE Place: Geo-political entities and locations
Africa America Washington London Pacific

DAT Reference to a date or period
January May December October June

LANG Any named language
English Chinese Japanese Spanish Russian

Table 2: Web 1T semantic categories and seeds.

Limited preprocessing was required to extract
the 5-grams from MEDLINE and TREC. The TREC

documents were converted from HTML to raw
text, and both collections were tokenised using
bio-specific NLP tools (Grover et al., 2006). We
did not exclude lowercase terms or templates con-
taining numbers. Templates appearing with less
than 7 (MEDLINE) or 3 (TREC) terms were re-
moved. These frequencies were selected to permit
the largest number of templates and terms load-
able by BASILISK3, to allow a fair comparison.

The size of the resulting datasets are shown in
Table 1. Note that, Web 1T has far fewer terms but
many more templates than the biomedical sets,
and TREC articles result in more templates than
MEDLINE for a similar number of terms.

4.2 Semantic Categories & Stop Categories

In the Web 1T experiments, we are extracting
proper-noun NE and their templates. We use the
categories from Curran et al. (2007) which are a
subset of those in the BBN Pronoun Coreference
and Entity Type Corpus (Weischedel and Brun-
stein, 2005), and are shown in Table 2.

In the MEDLINE and TREC experiments we
considered the TREC Genomics 2007 entities with
a few modifications (Hersh et al., 2007). We
excluded the categories Toxicities, Pathways and

3BASILISK requires n times more memory to store the
term and template frequency counts than MEB and WMEB,
where n is the number of categories.

CAT DESCRIPTION

ANTI Antibodies: Immunoglobulin molecules
MAb IgG IgM rituximab infliximab

CELL Cells: A morphological or functional form of a cell
RBC HUVEC BAEC VSMC SMC

CLNE Cell lines: Cell clones grown in tissue culture
PC12 CHO HeLa Jurkat COS

DISE Diseases: pathological process affecting organisms
asthma hepatitis tuberculosis HIV malaria

DRUG Drugs: A pharmaceutical preparation
acetylcholine carbachol heparin penicillin tetracyclin

FUNC Molecular functions and processes
kinase ligase acetyltransferase helicase binding

MUTN Gene and protein mutations, and mutants
Leiden C677T C28Y L5178Y S100B (MEDLINE)
T47D S100B K44A F442A G93A (TREC)

PROT Proteins and genes
p53 actin collagen albumin IL-6

SIGN Signs and symptoms of diseases
anemia hypertension hyperglycemia fever cough

TUMR Tumor types
lymphoma sarcoma melanoma neuroblastoma
osteosarcoma

Table 3: Biomedical semantic categories and seeds.

Biological Substances, which are predominately
multi-term entities, and the category Strains due
to the difficulty for biologists to distinguish be-
tween strains and organisms. We combined the
categories Genes and Proteins into PROT as there
is a very high degree of metonymy between these,
particularly once out of context. We were also in-
terested in the fine grain distinction between types
of cells and cell lines, so we split the Cell or Tis-
sue Type category into CELL and CLNE entities.

Five seed terms (as non-ambiguous as possi-
ble) were selected for each category based on the
evaluators’ knowledge of them and their high fre-
quency counts in the collections, and are shown
in Table 2 and 3. Separate MUTN seeds for MED-
LINE and TREC were used as some high frequency
MUTN terms in MEDLINE do not appear in TREC.

As in Curran et al. (2007) and Yangarber
(2003), we used additional stop categories, which
are extracted as well but then discarded. Stop cat-
egories help constrain the categories of interest by
creating extra boundaries against semantic drift.
For the Web 1T experiments we used the stop cat-
egories described in Curran et al. (2007) – AD-
DRESS, BODY, CHEMICAL, COLOUR, DRINK, FOOD,
JEWEL and WEB terms. İn the biomedical experi-
ments we introduced four stop categories – AMINO

ACID, ANIMAL, BODY and ORGANISM.



4.3 Evaluation

Our evaluation process involved manually in-
specting each extracted term and judging whether
it was a member of the semantic class. The
biomedical terms were evaluated by a domain ex-
pert. Unfamiliar terms were checked using on-
line resources including MEDLINE, Medical Sub-
ject Headings (MeSH), Wikipedia and Google.

Each ambiguous term was counted as correct
if it was classified into one of its correct cate-
gories. If a single term was unambiguously part of
a multi-word term we considered it correct. Mod-
ifiers such as cultured in cultured lymphocytes
and chronic in chronic arthritis were marked as
incorrect.

For comparing the accuracy of the systems we
evaluated the precision of the first n selected terms
for each category. In some experiments we report
the average precision over each category (Av(n)).

Our evaluation also includes judging the qual-
ity of the templates extracted. This is the first
empirical evaluation of the templates identified
by bootstrapping algorithms. We inspected the
first 100 templates extracted for each category,
and classified them into three groups. Templates
where the context is semantically coherent with
terms only from the assigned category are con-
sidered to accurately define the category and are
classified as true matches (TM). Templates where
another category’s term could also be inserted
were designated as possible matches (PM). For
example, DRUG matches: pharmacokinetics of X in

patients and mechanism of X action ., however the lat-
ter is a PM as it also matches PROT. Templates
like compared with X for the and Value of X in the are
false matches as they do not provide any contex-
tual information for a specific entity.

5 Results

All of our experiments use the stop categories
mentioned in §4.3, unless otherwise stated. The
maximum number of terms and templates (top-k)
which can be added in each iteration is 5.

Our first experiment investigates the weighting
functions for WMEB on the Web 1T and MED-
LINE data (Table 4). For the Web 1T data, all of
the measures are approximately equal at 400 ex-
tracted terms. On MEDLINE, χ2 outperforms the

Web 1T MEDLINE
100 200 300 400 100 200 300 400

χ2 78.5 74.2 69.1 65.2 87.1 89.5 89.0 89.4
MI 76.0 70.7 67.4 65.0 84.7 87.0 86.8 87.2
MI2 80.7 72.7 68.1 64.7 84.3 82.8 82.3 80.7
MIT 79.3 74.4 69.1 65.5 86.1 84.4 84.3 83.8

Table 4: Results comparing WMEB scoring functions.

other measures and is more consistent. In Table
4 we also see the first difference between the two
domains. The MEDLINE data scores are signifi-
cantly higher, with little semantic drift down to
400 terms. For the remaining WMEB experiments
we use the χ2 weighting function.

5.1 Terms
Table 5 and 6 summarise the comparison of
BASILISK, MEB and WMEB, on the Web 1T
and MEDLINE data respectively. The category
analysis is measured on the top 100 terms.
BASILISK outperforms MEB on both datasets,
whereas WMEB performs similarly to BASILISK

on the Web 1T data. For the MEDLINE data,
WMEB outperforms both BASILISK and MEB.

Each algorithm will stop extracting terms in
a category if all candidate terms are exhausted.
Templates may also become exhausted. Thus,
each algorithm may be penalised when we eval-
uate past their stopping points. We have provided
adjusted scores in brackets to take this into ac-
count. After adjustment, WMEB and BASILISK

significantly outperform MEB, and WMEB is more
accurate than BASILISK.

It is clear that some categories are much easier
than others to extract, e.g. LAST and CELL, while
others are quite difficult, e.g. NORP and FUNC.
For many categories there is a wide variation
across the algorithms’ performance, e.g. NORP

and TUMR.
The stop categories’ seeds were optimised for

MEB. When the stop categories are introduced
BASILISK gains very little compared to MEB and
WMEB. In BASILISK-NOSTOP categories rarely
drift into unspecified categories, however they do
drift into similar semantic categories of interest,
e.g. TUMR drifts into CLNE and vice-versa, in
early iterations. This is because BASILISK weakly
defines the semantic boundaries. In WMEB, this
rarely occurs as the boundaries are strict. We find
DISE drifts into BODY and thus a significant per-



CAT
NO STOP STOP

BAS MEB WMEB BAS MEB WMEB

FEM 98 100 100 99 100 100
MALE 97 100 100 97 100 98
LAST 100 100 100 100 100 100
TTL 39 9 46 37 31 53
NORP 67 17 41 64 22 40
FOG 90 98 98 90 95 98
PLCE 98 100 94 96 100 98
DATE 35 47 24 38 57 23
LANG 97 90 96 95 93 97
Av(100) 80.2 73.4 77.7 79.5 77.6 78.6

(84.7) (86.1) (84.3) (87.1)
Av(200) 73.5 68.7 71.0 72.2 73.2 74.2

(84.5) (80.8) (82.4) (85.4)

Table 5: Results comparing Web 1T terms.

CAT
NO STOP STOP

BAS MEB WMEB BAS MEB WMEB

ANTI 47 95 98 49 92 96
CELL 95 95 98 95 98 100
CLNE 91 93 96 81 100 100
DISE 77 33 49 82 39 76
DRUG 67 77 92 69 92 100
FUNC 73 60 71 73 61 81
MUTN 88 87 87 88 63 81
PROT 99 99 100 99 100 99
SIGN 96 55 67 97 95 99
TUMR 51 33 39 51 23 39
Av(100) 78.5 72.7 79.7 78.4 76.3 87.1
Av(200) 75.0 66.1 78.6 74.7 70.1 89.5
Av(300) 72.3 60.2 78.3 72.1 64.8 89.0
Av(400) 70.0 56.3 77.4 71.0 60.8 89.4

Table 6: Results comparing MEDLINE terms.

formance gain is achieved with the BODY stop
category.

The remainder of the analysis will be per-
formed on the biomedical data. In Table 7, we
can observe the degree of drift which occurs in
each algorithm on MEDLINE for a given num-
ber of extracted terms. For example, the 101–
200 row gives the accuracy of the 101–200th ex-
tracted terms. WMEB performs fairly consistently
in each range, whereas MEB degrades quickly
and BASILISK to a lesser extent. The terms ex-
tracted by WMEB in later stages are more accu-
rate than the first 100 extracted terms identified
by BASILISK and MEB.

In practice, it is unlikely we would only have 5
seed terms. Thus, we investigated the impact of
using 100 seeds as input for each algorithm (Ta-
ble 8). Only BASILISK improved with these large

RANGE BAS MEB WMEB

0–100 78.4 76.3 87.1
101–200 71.0 63.8 91.8
201–300 66.9 54.3 88.0
301–400 67.6 48.7 90.7
401–500 69.5 49.7 83.5

Table 7: Drift results on MEDLINE.

AV(N) BAS MEB WMEB

50 82.4 62.4 72.0
100 83.4 57.0 71.3
200 82.7 53.9 72.2

5 seeds: 200 78.4 76.3 89.5

Table 8: Results comparing 100 seeds on MEDLINE.

seed sets, however it did not outperform WMEB

with only 5 input seeds. WMEB and MEB do not
gain from these additional seeds as they severely
limit the search space by introducing many more
colliding templates in the early iterations.

5.2 Templates

Previous work has not evaluated the quality of the
templates extracted, which is crucial for tasks like
question answering that will utilise the templates.
Our evaluation compares the first 100 templates
identified by each algorithm. Table 9 shows the
distribution of true and possible matches.

Although each algorithm performs well on
CELL and CLNE, the templates for these are pre-
dominately PM. This is due to the difficulty of dis-
ambiguating CELL from CLNE. Categories which
are hard to identify have far more partial and false
matches. For example, the majority of TUMR

templates can also semantically identify BODY.
WMEB still performs well on categories with few
TM, in particular SIGN (99% with 54 PM) . This
is a result of mutual exclusion which forces those
templates to a single category.

5.3 Other experiments

BASILISK is noticeably less efficient than MEB

(14 times slower on Web 1T, 5 times on MED-
LINE) and WMEB (10 times slower on Web 1T,
4 times on MEDLINE). BASILISK cannot pre-
calculate the scoring metrics as they are depen-
dent on the state of the bootstrapping process.

Table 10 shows the effectiveness of WMEB’s in-
dividual components on MEDLINE. Here MEB is



CAT
BAS MEB WMEB

TM PM TM PM TM PM

ANTI 63 8 97 0 100 0
CELL 2 98 1 68 2 84
CLNE 1 99 79 21 78 22
DISE 80 15 5 81 95 5
DRUG 80 17 82 16 78 17
FUNC 62 33 10 42 49 50
MUTN 3 27 3 26 9 91
PROT 98 1 54 0 99 0
SIGN 93 6 90 5 12 54
TUMR 4 94 0 81 2 67
AV(100) 48.6 39.8 42.1 34.0 52.4 39.0

Table 9: Results comparing MEDLINE templates

100 200 500
MEB 76.3 70.0 58.6
WMEB-pool 83.2 81.7 77.8
WMEB-weight 82.3 79.5 76.4
WMEB 87.1 89.5 88.2

Table 10: Effect of WMEB weights and pool.

the baseline with no pool or weighting. WMEB-
pool corresponds to WMEB with weighting and
without the cumulative pool, and WMEB-weight
corresponds to WMEB with the pool and no
weighting. The weighting is extremely effective
with an approximate 7% performance gain over
MEB. The pool also noticeably improved per-
formance, especially in the later iterations where
it is needed most. These two components com-
bine effectively together to significantly outper-
form MEB and BASILISK.

Our last evaluation is performed on the fi-
nal test-set – the TREC Genomics full-text arti-
cles. We compare the performance of each al-
gorithm on the TREC and MEDLINE collections
(Table 11). WMEB performs consistently better
than BASILISK and MEB, however each has a sig-
nificant performance drop on TREC. This is due
to the variation in language use. In abstracts, the
content is more dense and precise, and thus con-
texts are likely to be less noisy. Full-text articles
also contain less cohesive sections. In fact, ANTI

with the largest performance drop for each al-
gorithm (WMEB 95% MEDLINE, 30% TREC) ex-
tracted templates from the methods section, iden-
tifying companies that provide ANTI.

ALG
MEDLINE TREC

Av(100) Av(200) Av(100) Av(200)
BAS 78.4 74.7 63.0 57.9
MEB 76.3 70.1 55.2 49.6
WMEB 87.1 89.5 67.8 66.0

Table 11: Results comparing MEDLINE and TREC.

6 Conclusions

In this paper, we have proposed Weighted Mu-
tual Exclusion Bootstrapping (WMEB), for effi-
cient extraction of high precision lexicons, and
the templates that identify them, from raw text.
WMEB extracts the terms and templates of mul-
tiple categories simultaneously, based on the as-
sumption of mutual exclusion. WMEB extends on
MEB by incorporating more sophisticated scor-
ing of terms and templates based on association
strength and a cumulative template pool to keep
templates active in the extraction process.

As a result, WMEB is significantly more effec-
tive at reducing semantic drift than MEB, which
uses a simple weighting function, and BASILISK,
which does not strictly enforce mutual exclusion
between categories. We have evaluated these al-
gorithms using a variety of semantic categories
on three different raw text collections. We show
that WMEB extracts more reliable large semantic
lexicons than MEB and BASILISK (even with far
fewer seeds). WMEB is more robust within the
biomedical domain, which has an immediate need
for these tools.

In the future, we plan to further investigate the
mutual exclusion assumption, and whether it can
be weakened to increase recall without suffering
semantic drift, and how it interacts with the term
and template scoring functions.

Our results demonstrate that WMEB can accu-
rately and efficiently extract terms and templates
in both general web text and domain-specific
biomedical literature, and so will be useful in a
wide range of NLP applications.
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